Please enter keywords to search

Global |EN

Choose your country & Language

Asia Pacific

Australia & New Zealand
India
Indonesia
Korea
Malaysia
Philippines
Singapore
Singapore (Sunlight)
Vietnam

Middle East & Africa

CHINT-EGEMAC
Saudi Arabia
South Africa
UAE
CHINT AJLAN
Egypt
Kenya

Europe

France
Kazakhstan
Netherlands
Italy
Spain
Turkey
United Kingdom

North America

Mexico

Latin America

Brazil
Colombia
Ecuador
Peru

Choose your country & Language

Australia & New Zealand
India
Indonesia
Korea
Malaysia
Philippines
Singapore
Singapore (Sunlight)
Vietnam
CHINT-EGEMAC
Saudi Arabia
South Africa
UAE
CHINT AJLAN
Egypt
Kenya
France
Kazakhstan
Netherlands
Italy
Spain
Turkey
United Kingdom
Mexico
Brazil
Colombia
Ecuador
Peru

Please enter keywords to search

Your search term contains restricted words. Please use different keywords.

Power Components for Solar and Storage Equipment

DEC 15, 2025

Introduction 

People often think that solar power relies mainly on panels and batteries. But did you know that the reliability of your solar and storage systems depends on DC protection and measurement? Components like DC breakers manage the current flow and isolate faults, ensuring your system is as efficient as possible. 

Why Solar and Storage Systems Depend on Specialized DC Components

In solar and storage systems, the real work actually happens in the DC component. It’s where the PV strings, MPPT inputs, combiner boxes, and battery racks work together to make the system reliable. These constantly deal with fluctuations, reverse currents, and fault energy, which is why they need to be protected from long-term damage. 

Each DC component has its own vital function, which is to protect, isolate, and measure. Protection comes from DC breaker, fuses, and surge protectors, which guard against faults and overloads, preventing equipment damage or fire hazards.

Isolation allows technicians to safely disconnect parts for maintenance or troubleshooting. DC disconnectors disconnect switches and create a break in the circuit. If not properly isolated, equipment can be unsafe to touch. 

Lastly, measurement devices track data such as voltage, current, temperature, and output, which help analyze system performance and battery health. With these three functions, the solar and storage systems can reach their optimum performance. 

DC Breakers for Solar and Storage Protection 

DC breakers play a crucial role in solar and storage systems. They protect every component in the system to ensure it functions properly. In PV arrays, the DC breaker isolates faulty strings and prevents reverse currents. In charge controllers, these prevent electronics from overloading. In battery banks, they help interrupt short-circuit currents. DC breakers are needed because DC circuits require specialized mechanisms compared to AC circuits. To know the two, here’s a table to better understand what makes them different: 

Features AC Systems DC Systems
Current flow Alternates and changes direction periodically Direct and flows continuously in one direction
Zero crossing Yes, it drops to zero 50 to 60 times per second No
Arc behavior Shorter and easier to interrupt Longer and harder to break
Fire risk Lower since it’s easy to interrupt Higher due to sustained arcs
Design complexity Simpler mechanisms Requires arc paths and chambers; magnetic blowout
Protection devices Standard Needs specialized DC breakers

Because of the above features, solar systems with DC breakers should be able to handle voltages up to 1000V in multi-string PV systems. These should have high interrupt ratings so that they can safely break short circuits from panels or battery packs. To reach its full potential, outdoor installations must have wide temperature tolerance and altitude compatibility, too. 

To make DC breakers work best, they should be paired with surge protection, fuses, and MPPT inputs and installed inside combiner boxes, rooftop arrays, and ESS racks. They should also be able to withstand fluctuating irradiance and frequent charge and discharge cycles. Without these critical requirements, DC arcs can cause a catastrophic system failure which is why it's important to hold DC breakers to a much stricter standard compared to the usual AC breakers. 

DC Disconnectors for Safe Isolation in PV and ESS Systems 

It’s important to note the difference between DC breakers, which protect and interrupt currents automatically when something goes wrong, and a DC connector, to isolate. 

DC disconnectors are required, especially in maintenance shutdowns. Isolation helps technicians to work on the systems without live DC power present. DC disconnectors also help isolate PV arrays before inverter work, or anything that involves touching or opening wires. These are also needed when working on battery banks, which supply continuous current even when the inverter is off. 

DC disconnectors are installed outdoors, which is why they’re held up to stricter environmental design requirements. These should have IP protection levels that guard against dust, rain, and moisture. They must also be made with UV-resistant material, especially when they’re exposed to sunlight. Most importantly, these should have high thermal endurance to operate even under heavy heat loads. 

Disconnectors like Chint’s NH4 Switch Disconnector or ASD16 DC Disconnector are ideal because they comply with the standards needed for storage systems. For example, NH4 is designed for safe circuit isolation, recommended for residential and commercial applications. Meanwhile, ASD16 can withstand current up to 75 kA, at 1500 Vdc and is made for ungrounded systems. 

Electricity Meters for Solar Output and Consumption Monitoring

Aside from protection and isolation, measurement is an important part of your solar and storage installation. Measuring determines if your system is performing as expected, if panels are shaded, or if inverters are producing the right amount of energy. In addition, this helps detect underperformance or shading, fulfill feed-in tariff or export requirements, and enable billing, net metering, and load tracking into how much energy is flowing to and from the grid. Measurement through the electricity meter helps homeowners and businesses understand how the energy is used and spot spikes in consumption. 

Meters in solar applications are designed to measure active energy, instantaneous power, voltage, and current so users can see the system’s behavior. Many smart electric meter models adhere to strict accuracy classes of Class 1.0 or 0.5, ensuring that readings are interpreted through the analysis of billing and performance. 

Aside from that, electric meters also support multi-tariff metering, which track energy usage across varied rate periods. This helps to make informed decisions about consuming power. 

CHINT CHID130 Electric Meter
CHINT CHID130 Electric Meter
chd-130-single-phase-din-rail-meter

Electric meters like CHINT’s CHD130 Single Phase DIN-Rail Meter is an example of a modern standard with features of class 1.0/0.5 accuracy, IP54 rating, a 110-240V operation, and event logging capabilities. 

Smart Electric Meters for Hybrid Solar + Storage Control 

Aside from basic measurement of energy, smart electric meters are capable of advanced functionalities. These are usually equipped with two-way communication, automated control features, and real-time monitoring which allow a solar and storage system to operate efficiently. 

In hybrid setups, meters coordinate battery charging schedules if they need to charge or discharge. They also prevent reverse power flow into the grid, a critical detail in areas with strict export limits. Smart electric meters also provide demand response data, integrating smoothly in EMS and BMS platforms that manage the system.

Smart meters usually are equipped with communication interfaces such as the RS485, PLC, or wireless option, or use protocols like the DLMS, COSEM, or STS for secure exchange of data.

Smart electric meters like CHINT’s CHD130 offer functions that meet the modern standards. Its anti-tamper detection, credit modes, and data logs add an extra layer of control and transparency to your systems. 

Ultimately, smart metering helps reduce operational risks, improve energy efficiency, and support remote monitoring. These factors ensure that performance is optimized and energy is managed effectively, making your solar and storage systems operate to its maximum potential. 

How Power Components Work Together in Solar and Storage Systems

DC breakers, disconnectors, and meters have different functions, but they work together in a coordinated protection and monitoring scheme. Breakers protect circuits, disconnectors provide isolation from maintenance, and meters supply real-time and accurate data to verify performance or detect abnormalities. With all these elements, risks can be prevented and guides can help provide information for system decisions. 

CHINT’s lineup of components help illustrate how integration works in practice. For one, the NB1-63DC provides branch-circuit protection for PV strings. NH4 is made for compact rooftop isolation. ASD16 DC Disconnector provides high-capacity switching for elevated DC voltages. Meanwhile, the CHD 130 supplies measurement, captures voltage, energy, and current data for monitoring. 

By using components from a unified family, it can help EPCs eliminate issues in terms of compatibility and coordination. This is because these components were designed in a coordinated manner, simplifying wiring layouts, reducing errors on installation, and making the whole system more manageable. 

Moreover, unified component families function as intended; creating a safer and reliable solar or storage system. When all elements are aligned, faults can be seen and interrupted fastly, arrays can be isolated, and operators can work safely and make guided decisions when it comes to installation and maintenance. 

Conclusion 

Reliable solar and storage systems rely on DC components which provide protection, isolation, and monitoring. Through these precise components, your system’s performance stays safe, functional, and consistent in all operating conditions. CHINT supports this through products with robust, standard-compliant devices suited to modern PV and ESS architectures. 

The Latest
DECEMBER 17, 2025 Understanding Power Losses: How Modern Switchgear Mitigates Inefficiency

Learn how power quality devices, LV switchgear, and shunt reactor solutions cut energy waste and improve electrical performance.

DECEMBER 15, 2025 Power Components for Solar and Storage Equipment

Discover the functions of the different specialized DC components and how these work together to protect, isolate, and measure solar and storage systems.

DECEMBER 12, 2025 Designing Turnkey Substations: From Specification to Commissioning

Learn how EPC teams use MV switchgear, HV switchgear, AIS, and HV MCCB to design efficient turnkey substations from spec to commissioning.

DECEMBER 10, 2025 Preventing Electrical Fires in Multi-Unit Buildings

Learn practical ways to improve electrical fire safety in multi-unit buildings with modern electrical safety devices and layered protection.

DECEMBER 8, 2025 Integrating Renewable Energy into Existing Grid Networks

Integrate renewables smoothly with modern power transformer solutions that stabilize voltage, support bidirectional flow, and strengthen grid reliability for clean energy growth.

DECEMBER 5, 2025 5 Ways to Cut Energy Costs in High-Load Industrial Environments

Energy efficiency is important in high-load industrial environments. Learn why knowing your power factor and reactive power compensation is important.

DECEMBER 5, 2025 Integrating VFDs to Optimize Motor Control in Heavy Industry

VFDs optimize your motor control, especially if you’re in a heavy industry setting. Learn how a variable frequency drive improves your process automation.

DECEMBER 5, 2025 Safe and Reliable Power Components for Smart HVAC Systems

Reliable electrical protection keeps HVAC systems safe, efficient and working smoothly. Explore how contactors, overload relays, and VFDs optimize performance.

DECEMBER 5, 2025 Choosing UL and IEC Components for Dual Market Equipment

Dual standards and dual certification are important in MCCBs. Learn how to choose UL and IEC components for dual market equipment to ensure safety.

DECEMBER 5, 2025 A Complete Guide to Selecting MCBs and RCCBs for Modern Buildings

Discover how to choose the right devices in the MCB vs RCCB lineup for safer, more reliable systems. Learn practical steps to strengthen electrical protection in modern buildings.