Please enter keywords to search

Global |EN

Choose your country & Language

Asia Pacific

Australia & New Zealand
India
Indonesia
Korea
Malaysia
Singapore (Sunlight)
Vietnam

Middle East & Africa

CHINT-EGEMAC
Saudi Arabia
South Africa
UAE
CHINT AJLAN

Europe

France
Italy
Spain
Turkey
Kazakhstan
Netherlands

North America

Mexico

Latin America

Brazil
Peru
Ecuador

Choose your country & Language

Australia & New Zealand
India
Indonesia
Korea
Malaysia
Singapore (Sunlight)
Vietnam
CHINT-EGEMAC
Saudi Arabia
South Africa
UAE
CHINT AJLAN
France
Italy
Spain
Turkey
Kazakhstan
Netherlands
Mexico
Brazil
Peru
Ecuador

Please enter keywords to search

Your search term contains restricted words. Please use different keywords.

Miniature Circuit Breaker: Working and Application

SEP 9, 2023

Table of Contents

  1. What is Inside a Miniature Circuit Breaker?
  2. Working Principle of MCB
  3. MCB Compared to Other Circuit Breakers
  4. Miniature Circuit Breaker: Operation
  5. How to Select Proper MCB for Different Loads
  6. Conclusion

Miniature circuit breakers are small but mighty safety components that protect circuits from damage. They are crucial to safely and efficiently operate machinery and other electrical systems. Here’s a quick overview of how miniature circuit breakers work and their applications.

What is Inside a Miniature Circuit Breaker?

There are two basic components to a miniature circuit breaker. The first is a strip made of steel and copper, called the bimetallic strip. This is the strip that melts and interrupts the circuit in the case of a current overload. The other component is a coil that stops short circuits. The coil will trip in less than one-tenth of a second. The bimetallic strip responds quickly but slower than the coil.

Working Principle of MCB

The bimetallic strip is the chief protective component of an MCB. When an overcurrent flows through an MCB, the strip heats up. When it reaches the point of its rating, it melts and deforms. When that happens, it trips a latch.

That latch separates the contacts, stopping the current. After it trips, the only way to get the current flowing again is to replace the bimetallic strip manually and reset the MCB.

In the case of short circuits wherein there’s a surge in current, the MCB trips a solenoid connected to the latch. Like when the bimetallic strip melts, the tripped latch separates the contacts thereby preventing the flow of current.

This acts almost instantaneously to prevent any further damage. The solenoid generates a magnetic field when a high current passes through it and triggers the latch to release the contacts.

MCB Compared to Other Circuit Breakers

MCBs are great for certain jobs. Sometimes, though, they aren’t strong enough to protect bigger circuits. In commercial and industrial electrical systems, you might need different types of circuit breakers working together.

MCBs vs MCCBs

MCBs have ratings under 100 amperes while MCCBs can go as high as 2500 amperes. MCBs are used for low energy requirements such as residential use. MCCBs, on the other hand, are used for high power requirements for industrial and commercial use.

MCCBs also have a feature where they can be remotely turned off whereas MCBs don’t. That’s useful when a worker notices an issue that could cause damage to a particular circuit.

MCBs vs ELCBs

An earth-leaking circuit breaker detects current leakage, which is a kind of short circuit. An ELCB doesn’t detect overcurrent.

The ELCB reacts when current flows backward along the grounding wire. It’s an added protection against both circuits due to the current leakage and operator electrocution.

MCBs vs RCDs

RCDs (residual current circuit breakers) are designed to trip in as few as 25 milliseconds, four times faster than an MCB. They protect against faults with the ground that often result in fatal electrocution accidents. They generally trip when a ground fault of 25 or more milliamperes occurs.

Also, MCBs only respond to current that would become dangerous to the machinery. That might be dozens, or even hundreds, of times more powerful than what is dangerous for human beings.

Miniature Circuit Breaker: Operation

One of the most common reasons MCBs trip happens is when someone accidentally plugs two things, such as a microwave and desktop grill, into the same circuit and turns them both on at once. We’ve all gone down into the basement to flip the switch back into the “on” position at the junction box or to replace an MCB with a distorted bimetallic strip.

When the strip deforms, the spring that is attached to the latch moves, separating the contacts. When a short circuit happens, the magnetic field inside the coil causes a plunger to move, which then disengages the latch and the contacts. The force involved is called the magneto-motive force or MMF.

You can move a lever on the outside of the MCB to separate the contacts. If you choose to reset the MCB rather than replace it, then you can move the lever in the other direction once you add a new bimetallic strip or reset the spring and plunger.

When the contacts separate, there is a possibility of an electrical arc. The way circuits are built means that the arc is shunted through the runner into a selection of splitters to be safely quenched. Again, if resetting rather than replacing the MCB, once you complete all the reset steps, which include replacing faulty wires in the case of a short circuit, then you can turn the circuit back on because the MCB is ready.

How to Select Proper MCB for Different Loads

The first thing to determine is the load of the circuit that needs protecting. Then, you have to choose an MCB that has a rating equal to or slightly greater than that load. It can’t be too much greater than the load of the circuit because it would never trip. It can’t be too little, either, or it’ll trip all the time.

As an example, many junction boxes in homes are separated into 20-amp circuits. That means that the total amperage that any one of those particular circuits can carry is 20 amps. So, you can have one 20-amp appliance on the circuit, two 10-amp appliances, or an 8-amp and a 12-amp, etc.

Further, let’s say that a particular appliance has a 10-amp load. If the appliance itself has a circuit breaker, then it should be rated at greater than, or equal to, 10 amps and less than 20 amps. Ideally, it should be close to 10 amps. That way, the appliance can protect itself as well as rely on the main breaker at the junction box.

Conclusion

Choosing the right circuit breaker is important for the safety of the electrical circuits. Be sure to pick the right breaker for the right job. At Chint Global, we offer a wide range of miniature circuit breakers to suit various needs.

Whether you need a simple solution for your home or a robust system for your industrial setup, we have the right options for you. Explore our extensive range of circuit breakers and find the ideal solution for your electrical safety needs.

FAQ about Miniature Circuit Breaker

What are the types of MCBs?

Can an MCB protect against electric shocks?

Are there any safety precautions to consider with MCBs?

The Latest
JUNE 12, 2025 What Is Motor Start Up Current and Why Is It So High?

Discover why motor start-up current is so high and how it affects electrical systems. Learn how to protect motors effectively with CHINT's solutions.

JUNE 12, 2025 Selecting the Right Air Circuit Breaker for Data Centers and Critical Power Distribution Site

Discover how to select the right air circuit breaker for data centers. Learn about CHINT’s NA8 features, certifications, and smart integration benefits.

JUNE 11, 2025 Everything You Should Know About Solar Pumping System

Understand the benefits, applications, and components of solar pumping systems including CHINT’s NVFPV drives for reliable water access.

JUNE 10, 2025 How Altitude Affects the Performance of Moulded Case Circuit Breakers

Learn the effects of altitude on circuit breakers and explore CHINT’s NM8N-HV MCCB built for extreme conditions with high performance and safety.

JUNE 9, 2025 What Is A Pulse Relay and How Does It Work?

Explore the energy-efficient pulse relay technology used in automation, lighting, and security systems. Featuring CHINT’s NJMC1 relay for reliable performance.

JUNE 7, 2025 Understanding AC Contactors: Uses and Warning Signs of Failure

Learn how to recognize signs of a failing AC contactor and get expert tips on resolving issues, performing maintenance, and ensuring electrical safety.

JUNE 6, 2025 What Are Harmonics and Total Harmonic Distortion (THD) in Power Systems

Discover the causes, impacts, and solutions for harmonics and THD in electrical networks. Enhance reliability with CHINT’s NZB379 controller.

JUNE 6, 2025 Types of Lightning Surge Arresters and Their Functions

Discover the essential types of lightning surge arresters and their working principles. Learn how to protect your electrical systems from voltage surges effectively.

JUNE 5, 2025 Thermal Magnetic Circuit Breakers vs Hydraulic Magnetic Circuit Breakers

A comprehensive comparison of thermal magnetic and hydraulic magnetic circuit breakers. Learn about their protection, environmental susceptibility, trip time, size, and cost with CHINT.

JUNE 5, 2025 Automatic Transfer Switch (ATS) Comprehensive Guide

Explore how ATS ensures uninterrupted power supply for critical applications. Learn about types, uses, performance, and CHINT solutions.