Please enter keywords to search

Global |EN

Choose your country & Language

Asia Pacific

Australia & New Zealand
India
Indonesia
Korea
Malaysia
Philippines
Singapore
Singapore (Sunlight)
Vietnam

Middle East & Africa

CHINT-EGEMAC
Saudi Arabia
South Africa
UAE
CHINT AJLAN
Egypt
Kenya

Europe

France
Kazakhstan
Netherlands
Italy
Spain
Turkey
United Kingdom

North America

Mexico

Latin America

Brazil
Colombia
Ecuador
Peru

Choose your country & Language

Australia & New Zealand
India
Indonesia
Korea
Malaysia
Philippines
Singapore
Singapore (Sunlight)
Vietnam
CHINT-EGEMAC
Saudi Arabia
South Africa
UAE
CHINT AJLAN
Egypt
Kenya
France
Kazakhstan
Netherlands
Italy
Spain
Turkey
United Kingdom
Mexico
Brazil
Colombia
Ecuador
Peru

Please enter keywords to search

Your search term contains restricted words. Please use different keywords.

What Is Power Factor Correction and Why Is It Necessary

29 AUG 2021

power-factor-correction-20210829
power-factor-correction-20210829
power-factor-correction-20210829

Table of Contents

  1. What Is Power Factor and Power Factor Correction? 
  2. Why Power Factor Correction Is Necessary? 
  3. How Do You Calculate Power Factor Correction? 
  4. Conclusion

All the electrical equipment consumes power while operating. That power is real power. However, there is also reactive power. But the reactive power is different from real power. The devices will not use this power directly. But it can contribute to the increasing monthly bills. Both real power and reactive power come together to become the apparent power.

Apparent power is related to the power factor. If you want to know more about power factor and power factor correction, you can consider the following. We will also cover the use of power factor, the importance of power factor, power factor correction capacitor, and power factor improvement. Besides, we will discuss the power factor correction formula.

Power factor is a connection between apparent power and a real power. We can have poor and good power factors based on the relationship between real power and apparent power. With poor power factor, the electricity bill will be more. Here the power factor correction comes in. Let’s cover more details.

What Is Power Factor and Power Factor Correction?

Now, you know about the real power, apparent power, and power factor. Power factor is the correlation between real power and apparent power. What will happen if you have a poor power factor? You will end up spending more on energy consumption. Can you make it right? Yes, you can consider power factor improvement. We will know how to do this.

As stated earlier, power factor correction is a technology. You can install this technology to minimize your electricity bill. The technology will maintain the reactive power consumption level. As a result, the power factor will not fall below the desired figure, and you can manage your energy bills. You can find the best electrical equipment and technology from CHINT .

The power factor correction will increase the load of the power factor. Also, it will boost the efficiency of the distribution system. It will correct the linear loads with a passive power factor correction capacitor. Also, the non-linear loads will deform the power drawn from the system.

In these conditions, passive and active power factor correction can help. They can counteract to improve and distortion of the power factor. The device that is used for the power factor correction will be at the central substation. It can correct the power factor and help with a lower power bill.

importance-of-power-factor-20210829
importance-of-power-factor-20210829
importance-of-power-factor-20210829

Why Power Factor Correction Is Necessary?

We all should know about power factor and power factor correction to control our energy bills. By following a few simple steps, you can reduce the power bill. Also, it will save you a lot in the end. From the above, you might have realized that you pay more on reactive power. However, your devices do not use this power directly. Hence, there is no point in spending on that extra charge. With improved power factor results, you can save and use that money for other purposes. Apart from that, a good power factor will boost the longevity of your electrical devices. Benefits are many, and you will have to know how to do it right and get all the advantages.

Most power suppliers will charge you for kW (for the base load). They will also charge for the maximum demand tariff. When the maximum demand tariff will be measured in the kVA, the power factor will be improved. Also, it will minimize the kVA of your installation. As a result, there will be lower energy bills and less maximum demand tariff. With this installation, you can expect long-term benefits.

You might be thinking that why you need a power factor correction. As stated above, there is a network regulation for the minimum power factor. The company will charge you more if you do not meet the minimum power factor. The determined value will vary based on the region.

It is worth mentioning that a poor power factor will draw more power than an improved power factor for the same amount of power consumption. By making improvements in the power factor, you can minimize power consumption. The technology will enable your system to draw less reactive power. Hence, it can help to reduce monthly energy bills. You can manage the capacity charges as well.

The payback period for your power factor correction will be between one and three years. Therefore, you can consider this investment to get benefits every month. When it comes to poor power factors, they can lead to voltage drops and power losses. Both these factors can lead to overheating and cause motor failure. If you have a poor power factor in your electric system, you can install power factor correction technology to avoid costly damages. This addition will lower the electric demand in your system and improve efficiency stability. Apart from that, power factor correction can enable you to know the level of your power consumption.

power-factor-correction-formula-20210829
power-factor-correction-formula-20210829
power-factor-correction-formula-20210829

How Do You Calculate Power Factor Correction?

Now you know how power factor correction is helpful to lower the energy bills and prevent any damage due to overheating. Next, we will cover how to calculate your power factor correction. You will have to go through the following three steps.

Step 1

Start with the actual load. You will have to calculate kW (actual load)

Kw=Current I x Volts V x Power Factor Pf x√3

Step 2

In this step, you will have to calculate kVAr (the Required Power Factor Correction)

kVAr Power Factor Correction= KW (TanΦi – TanΦd)

Φd =Required Power Factor Pf

Φi = Initial Power Factor Pf

Step 3

Finally, you will have to calculate kAVr (Actual Power Factor Correction)

kVVr Pf= TanΦi – Correction kVAr

By following the above steps, you can calculate your power factor correction.

Conclusion

Power factor plays a significant role in increasing or decreasing your monthly energy consumption. If you realize that you have a poor power factor, you can consider improving it. A power factor correction technology can help in this regard. After this installation, you will have to spend less on energy consumption. Additionally, the electric devices will last long in the absence of overheating.

The Latest
DECEMBER 17, 2025 Understanding Power Losses: How Modern Switchgear Mitigates Inefficiency

Learn how power quality devices, LV switchgear, and shunt reactor solutions cut energy waste and improve electrical performance.

DECEMBER 15, 2025 Power Components for Solar and Storage Equipment

Discover the functions of the different specialized DC components and how these work together to protect, isolate, and measure solar and storage systems.

DECEMBER 12, 2025 Designing Turnkey Substations: From Specification to Commissioning

Learn how EPC teams use MV switchgear, HV switchgear, AIS, and HV MCCB to design efficient turnkey substations from spec to commissioning.

DECEMBER 10, 2025 Preventing Electrical Fires in Multi-Unit Buildings

Learn practical ways to improve electrical fire safety in multi-unit buildings with modern electrical safety devices and layered protection.

DECEMBER 8, 2025 Integrating Renewable Energy into Existing Grid Networks

Integrate renewables smoothly with modern power transformer solutions that stabilize voltage, support bidirectional flow, and strengthen grid reliability for clean energy growth.

DECEMBER 5, 2025 5 Ways to Cut Energy Costs in High-Load Industrial Environments

Energy efficiency is important in high-load industrial environments. Learn why knowing your power factor and reactive power compensation is important.

DECEMBER 5, 2025 Integrating VFDs to Optimize Motor Control in Heavy Industry

VFDs optimize your motor control, especially if you’re in a heavy industry setting. Learn how a variable frequency drive improves your process automation.

DECEMBER 5, 2025 Safe and Reliable Power Components for Smart HVAC Systems

Reliable electrical protection keeps HVAC systems safe, efficient and working smoothly. Explore how contactors, overload relays, and VFDs optimize performance.

DECEMBER 5, 2025 Choosing UL and IEC Components for Dual Market Equipment

Dual standards and dual certification are important in MCCBs. Learn how to choose UL and IEC components for dual market equipment to ensure safety.

DECEMBER 5, 2025 A Complete Guide to Selecting MCBs and RCCBs for Modern Buildings

Discover how to choose the right devices in the MCB vs RCCB lineup for safer, more reliable systems. Learn practical steps to strengthen electrical protection in modern buildings.