Please enter keywords to search

Global |EN

Choose your country & Language

Asia Pacific

Australia & New Zealand
India
Indonesia
Korea
Malaysia
Philippines
Singapore
Singapore (Sunlight)
Vietnam

Middle East & Africa

CHINT-EGEMAC
Saudi Arabia
South Africa
UAE
CHINT AJLAN

Europe

France
Italy
Spain
Turkey
Kazakhstan
Netherlands

North America

Mexico

Latin America

Brazil
Peru
Ecuador

Choose your country & Language

Australia & New Zealand
India
Indonesia
Korea
Malaysia
Philippines
Singapore
Singapore (Sunlight)
Vietnam
CHINT-EGEMAC
Saudi Arabia
South Africa
UAE
CHINT AJLAN
France
Italy
Spain
Turkey
Kazakhstan
Netherlands
Mexico
Brazil
Peru
Ecuador

Please enter keywords to search

Your search term contains restricted words. Please use different keywords.

PV Modules: Basics and Working

2023年9月26日

Table of Contents

  1. What is a PV Module?
  2. How Does a PV Module Work?
  3. Basic Structure of a PV Module
  4. Types of Solar PV Modules
  5. Efficiency of Photovoltaic Systems
  6. Conclusion

Solar energy, particularly PV modules, are playing an essential role in the energy sector. PV modules supply clean, renewable energy and are a valid alternative to other forms of energy, like burning fossil fields.

As more homes and businesses adopt PV modules, companies like Chint Global at the forefront of cutting technologies in solar power. Their goal is to meet their current needs while providing innovations and improvements.

What is a PV Module?

PV (Photovoltaic) modules, sometimes called PV or solar panels, are an integral part of a solar power system. A PV module captures light energy from the sun and converts it into electrical energy. Each module is made up of a grid of small solar cells. The cells are made of a semiconductive material, typically silicon.

This material is sensitive to light and uses the photovoltaic effect to convert light energy into electricity. The PV effect is a chemical and physical phenomenon that allows certain materials to change sunlight into electricity.

How Does a PV Module Work?

Sunlight travels in small particles called photons. When a photon strikes a semiconductive material, it can bounce off, go through, or be absorbed. When enough photons are absorbed, the material can free some of the electrons from the sunlight.

These free electrons have a negative charge and create a disparity of charges between the front and back of the cell. This disparity develops a voltage potential between the positive and negative particles, similar to the ends of a battery. Conductors absorb the electrons and move them through a circuit, creating electrical power.

Basic Structure of a PV Module

PV module is composed of layers. Each layer aids in the absorption of sunlight and the conversion to electricity. A module is made up of 60 or 72 solar cells that are all connected. The cells are the main part of the module. It is responsible for absorbing sunlight. The cells are contained in one module to protect them in an outdoor environment.

There are two layers on top of the cells—tempered glass and the encapsulant material. The glass is highly transparent to aid in trapping photons. It is also thick enough to protect the other components. The encapsulant material is made out of EVA. Layers are laminated to the front and back of the cells. It connects the main parts of the module.

There is a backsheet beneath the cells and encapsulant. It’s made of plastic and acts as an insulator and protective layer for the solar cells. An aluminum frame surrounds the entire structure. It allows for safe coupling with other modules and adds to their stability. A junction box is attached to the back of the module. It’s made of plastic and contains wiring and diodes. Multiple panels are connected through the junction box.

A PV module’s success is highly dependent on the materials’ quality and the construction’s caliber. Chint Global uses only high-quality materials to ensure performance. We pride ourselves on using the best construction methods to increase the efficiency and lifespan of your module.

You may be interested in this blogpost

    Photo-Voltaic (PV) Module: Features and Applications

    Learn More »

    Features of Standard Silicon PV Modules and Cells

    Learn More »

Types of Solar PV Modules

There are several types of solar PV modules. Three of the most popular types are monocrystalline, polycrystalline, and thin-film. Let’s compare the three types along with some advantages and limitations of each.

Monocrystalline panels are among the oldest forms of solar cells. Manufacturers start with pure molten silicon and use it to grow an ingot. They then cut the ingot into thin wafers shaped like octagons, which fit together well on the panel. The cells are made of pure silicon, allowing electrons to move easily within the cell.

Monocrystalline panels are currently the most popular type of PV module. They have an efficiency between 10-15%, with some newer models reaching up to 50%. While monocrystalline panels are the most efficient and durable, they can be costly.

Polycrystalline cells are another crystalline module made of pure silicon. However, their manufacturing process differs. Instead of creating and cutting an ingot, the silicon hardens and separates into fragments. The pieces are melted and shaped into cubes. They are then sliced into thin wafers and put together to form panels.

Polycrystalline cells have an efficiency rating of 13-16%. While its less efficient than monocrystalline, they are less expensive and have a faster production time. They are durable, but their efficiency decreases on hotter days.

Instead of silicon, thin-film modules are made of photovoltaic materials like a-Si, CdTe or CIGS. The material is placed on a piece of glass with another piece on top. They do not require a frame and are flexible when incorporating plastic. 

Thin-film is a good option if you want something that will blend in with your architecture. They are also inexpensive and lightweight. However, they have lower efficiency. They aren’t as durable as well and take up a lot of space.

Efficiency of Photovoltaic Systems 1536x909
Efficiency of Photovoltaic Systems 1536x909
Efficiency-of-Photovoltaic-Systems-1536x909

Efficiency of Photovoltaic Systems

The efficiency of photovoltaic systems is crucial for harnessing solar energy. The main determinant of this efficiency is solar cell capability. Although a solar panel’s efficiency peaks at 25%, its power-producing potential can reach a staggering 1000W.

For instance, a 250W mono-crystalline PV module can potentially produce 1000W, showing a record efficiency of 43.6%. However, efficiency is also influenced by factors like module direction, angle, irradiance, temperature, shade, and load.

Conclusion

PV modules can be a game-changer for your home or business’s energy needs. Models are constantly improving in efficiency. When choosing a PV system, carefully consider your needs, including energy output, space, aesthetics and budget.

CHINT Global offers high-quality solar power products, including PV modules. Contact us today to learn more.

The Latest
JULY 1, 2025 An Introduction to Power Circuit Breakers: How Do They Protect Your Industrial and Commercial Facilities?

Explore CHINT’s power circuit breaker solutions for high-performance electrical protection in industrial, commercial, and healthcare environments.

JULY 1, 2025 Understanding the VFD Working Principle in Industrial Automation

Learn the working principle of VFDs and discover how CHINT NVF7 boosts performance, energy savings, and equipment longevity in industrial automation.

JUNE 30, 2025 Gas Insulated Switchgear in Renewable Energy Integration

Learn how CHINT’s gas-insulated switchgear ensures stable, safe, and compact power distribution in renewable energy projects like wind and solar farms.

JUNE 30, 2025 Factors that Influence Commercial HVAC System Cost

Learn the major factors that impact commercial HVAC system pricing, from system types and tonnage to installation conditions and energy efficiency.

JUNE 27, 2025 Applications of Power Transformers in Solar Energy Systems

Discover how CHINT Global's power transformers enhance solar energy systems through efficient voltage regulation and grid integration for homes, businesses, and utility-scale projects.

JUNE 27, 2025 How to Wire a Low-Voltage Transformer

Discover essential safety precautions, wiring methods, and troubleshooting tips for low-voltage transformer setup. A complete guide for technicians and engineers.

JUNE 27, 2025 Water Pump Drives: PTO vs. Battery vs. Solar

Explore key benefits and drawbacks of PTO, battery-powered, and solar-powered water pump systems. Choose the right drive for your specific use case.

JUNE 26, 2025 How to Install a Changeover Switch for a Generator?

Discover how to install a manual changeover switch for your generator. Ensure safe and reliable power transfer with CHINT's expert tips and tools.

JUNE 25, 2025 RCBO Breakers Explained: How They Work, Wiring Diagrams, and Testing Tips

Discover how RCBO breakers protect against overloads and Earth leakages. Learn about wiring diagrams, differences from MCBs, and testing tips for safe operations.

JUNE 12, 2025 What Is Motor Start Up Current and Why Is It So High?

Discover why motor start-up current is so high and how it affects electrical systems. Learn how to protect motors effectively with CHINT's solutions.