Please enter keywords to search

Global |EN

Choose your country & Language

Asia Pacific

Australia & New Zealand
India
Indonesia
Korea
Malaysia
Singapore (Sunlight)
Vietnam

West Asia and Africa

CHINT-EGEMAC
South Africa
UAE

Europe

Italy
Spain
Turkey

North America

Mexico

Latin America

Brazil
Peru

Choose your country & Language

Australia & New Zealand
India
Indonesia
Korea
Malaysia
Singapore (Sunlight)
Vietnam
CHINT-EGEMAC
South Africa
UAE
Italy
Spain
Turkey
Mexico
Brazil
Peru

Please enter keywords to search

Your search term contains restricted words. Please use different keywords.

What You Need to Know about Oil-immersed Transformer

AUGUST 29, 2023

chint Oil Immersed Transformer
chint Oil Immersed Transformer
chint-Oil-Immersed-Transformer

Oil-immersed power transformers have many benefits, particularly their efficient cooling capabilities. They are used in many industries and can be found at both electrical substations and power distribution centers. Read on to learn more about oil-filled transformers and how they may be useful to you.

What Is an Oil-Immersed Transformer?

Transformers change an alternating current (AC) to a higher or lower voltage. A current may need to move to a higher voltage as higher voltages are easier and faster to transport. A current may need to decrease its voltage in residential, commercial, and industrial areas.

One type of transformer is an oil-immersed transformer. Transformers often operate in high-energy, high-heat situations. An oil-filled transformer suspends the transformer of a steel tank filled with oil. The oil cools and insulates the transformer. The device uses convection to move the oil around and through the transformer, cooling it off.

To avoid oil deterioration, transformer oil must be kept at an operating temperature of less than 85°C. For the transformer to run correctly and to prevent excessive oil deterioration, the daily average operating temperature should be around 30°C.

Oil-immersed Transformer: Working Principle

Substations and power distribution areas use oil-immersed transformers. An oil-immersed transformer is similar in design to a regular transformer. It’s made up of three main parts: a magnetic core at the center that is surrounded by coils and bushings. 

The magnetic core and windings create a magnetic field, allowing the current to pass through. Windings are insulated, with higher voltages needing thicker insulation. Bushings transmit the electricity to its next destination, typically a substation.

Oil-filled transformers change a current to a higher or lower voltage using the principle of induction. This process creates a surplus of heat. The oil helps to keep the transformer from overheating.

The windings and core are submerged in transformer oil. It acts as a cooling agent and an insulator. Convection moves the oil through the windings, coils, and core, keeping the transformer from overheating. Oil is further cooled externally at lower voltage and in an air-cooled radiator with higher voltages.

Types of Oil-Filled Transformers

There are several types of oil-filled transformers. Here are a few of the most common below.

  • Single-phase transformers use one pair of windings. It’s used in lower-load situations, such as rural areas.
  • Three-phase transformers are made up of three pairs of windings. The windings typically go around a core sectioned into three parts. Three-phase transformers are used in higher-load areas and can supply three circuits with energy.
  • Power transformers are designed to handle much higher loads. They can step voltages up or down and transmit a current from one place to another.
  • Distribution transformers transmit lower voltages from the electrical grid to homes and businesses. They are much smaller than power transformers.
  • Pole-mounted transformers are connected to an electrical pole.
  • Pad-mounted transformers are mounted to a concrete pad on the ground.

Advantages of Oil Immersed Transformer

Contractors typically have to choose between oil-filled and dry-type transformers. Both have their advantages. Let’s delve into some of the reasons that an oil-filled transformer may be the right choice for you.

First, oil-filled transformers are more affordable. They are often up to half the price of a dry-type transformer with the same capacity.

Oil-immersed transformers tend to be more successful at cooling the transformer than a dry type. Oil is a better cooling medium. They also have a higher voltage capacity. Dry-type transformers operate below 35 kV, while there are no limits with oil-immersed. Oil transformers are more versatile.

Dry-type can typically go from an intermediate location to the power consumption source. Oil-immersed can function as both power and distribution transformers.

Oil-filled transformers are better for the environment, as they are much easier to recycle than dry-type. They are also smaller and work best in outdoor environments in case of an oil spill or other accident.

Maintenance and Safety Considerations for Oil-Immersed Transformers

Oil-immersed transformers have maintenance and safety considerations. Keeping your transformer well-maintained can lengthen its lifespan and reduce the risk of safety issues.

You should perform regular visual inspections and cleanings. Check the transformer to ensure that all parts are in good condition and that there is no threat of leaks. Make sure that all fittings are tight. Clean the exterior and interior of the transformer to remove dust, dirt, and other debris.

It’s also essential to check the oil frequently. Make sure that the oil is at its proper level. You should also take samples of the oil and have it tested. You don’t want to use contaminated oil. Finally, keep an eye on the temperature and air pressure. You want to be sure that the transformer is within the suggested levels.

As with any electrical equipment, there is always a risk of fire. In the event of a fire, it’s important to ensure that the oil doesn’t leak out from the transformer. Oil can cause the fire to spread, making a hazardous situation even more dangerous.

Conclusion

Oil-immersed transformers provide many benefits and are often a better choice than dry-type transformers. They are efficient and affordable and can run at almost any capacity. While they do require maintenance and pose some safety risks, with the proper care and use, you’ll be able to get the most out of your equipment.

Chint Global is dedicated to providing high-quality electrical equipment for your business needs. We offer several safe and reliable oil-immersed transformers to fit a variety of situations. Contact one of our expert representatives today to help you choose the best transformer for your needs.

FAQ about Oil-Immersed Transformer

How is it different from a dry-type transformer?

How do Oil-Immersed Transformers handle overloads?

Are Oil-Immersed Transformers more efficient than dry-type?

The Latest
NOVEMBER 28, 2024 DC Meter: Principles, Technology, and Applications

This article will explore the working principles of DC meters, their technical composition, and the applications in various scenarios.

NOVEMBER 26, 2024 Beyond the Basics: Smart Circuit Breakers for Intelligent Protection

Smart circuit breakers are a solution for the needs of today’s world. This article explores the advantages of these intelligent devices and more.

NOVEMBER 5, 2024 Can I Use General Miniature Circuit Breaker (MCB) for PV?

Miniature circuit breakers are widely adopted. They are used for branch circuit protection in many electrical systems. However, as solar photovoltaic technology continues to expand rapidly, one question arises: Can I use a general miniature circuit breaker for PV?

NOVEMBER 5, 2024 Top 3 Pain Points of Data Center Operations

In today’s digital age, data centers have become critical infrastructure. They enable our increasingly online lives and economies. They store massive amounts of data and power cloud services and applications.

SEPTEMBER 10, 2024 A Complete Guide to LV Distribution Board

LV distribution boards, part of the electrical distribution system, securely distribute low-voltage power to facility circuits.

SEPTEMBER 9, 2024 A Guide to Ring Main Units (RMU) in Wind Power Industry

An RMU, or ring main unit, is a type of medium-voltage switchgear. It consists of one or more circuit-breaker units with associated disconnectors, earthing switches, and instrument transformers.

SEPTEMBER 9, 2024 How to Choose a House Distribution Box

A well-chosen distribution box ensures the safety and efficiency of your household electrical system. This article guides you through selecting a distribution box.

SEPTEMBER 9, 2024 How Does a Variable Frequency Drive Work?

This article discusses in detail how a variable frequency drive works. Its working generally includes rectification, filtration, and inversion.

JULY 14, 2024 Metal Oxide Arrester (MOA) Overview: Working Principle, Types, Applications

This article discusses how a metal oxide arrester works and introduces its types and applications.

JULY 14, 2024 A Guide to CHINT Smart Handheld Test Unit

CHINT Smart Handheld Test Unit provides a reliable solution for testing ACB protection functions without risk of damage.