Please enter keywords to search

Global |EN

Choose your country & Language

Asia Pacific

Australia & New Zealand
India
Indonesia
Malaysia
Philippines
Singapore
Vietnam

Middle East & Africa

Saudi Arabia
South Africa
UAE
Egypt
Kenya

Europe

France
Kazakhstan
Netherlands
Italy
Spain
Turkey
United Kingdom

North America

Mexico
USA
Canada

Latin America

Brazil
Colombia
Ecuador
Peru

Choose your country & Language

Australia & New Zealand
India
Indonesia
Malaysia
Philippines
Singapore
Vietnam
Saudi Arabia
South Africa
UAE
Egypt
Kenya
France
Kazakhstan
Netherlands
Italy
Spain
Turkey
United Kingdom
Mexico
USA
Canada
Brazil
Colombia
Ecuador
Peru

Please enter keywords to search

Your search term contains restricted words. Please use different keywords.

How Does a Variable Frequency Drive Work?

9 SEP 2024

Table of Contents

  1. VFD Circuit Diagram Example
  2. How Does a Variable Frequency Drive Work?
  3.    Rectification
  4. Filtration
  5. Inversion
  6. Speed Control
  7. Conclusion

variable frequency drive is a type of motor drives that control motor speed and torque by varying the frequency of supplied current to electric motors. As straightforward as it may sound, the process involves a series of steps, including rectification, filtration, and inversion. This article focuses on the workings of VFD, mainly discussing how it controls the speed of 3-phase electric motors.

VFD Circuit Diagram Example

Before we explain the workings of variable speed drive, let’s go through the following VFD circuit diagram that visualizes the main components of variable frequency drive. This can help better understand how a variable frequency drive works:

How Does a Variable Frequency Drive Work?

It is noticeable that the 3-phase alternating current flows through a rectifier (converter), a filter, and an inverter in sequence before entering the electric motor:

Rectification

The VFD’s journey begins with the rectifier, where the 3-phase alternating current is converted into direct current. A typical rectifier is a six-pulse rectifier that consists of 6 diodes. Each diode has an anode and a cathode. Electrical currents can only go from anodes to cathodes and there will only be electrical currents if the voltage at the anode is greater than the cathode.

As we know, 3-phase AC provides three alternating currents on separate conductors. These currents fluctuate independently in their cycles of increase and decrease. When we connect 3-phase AC to the converter, only 2 diodes should be open at the same time, allowing only 1 current flow. As a result, the AC is rectified and converted into ripple DC.

Filtration

Next, the rectified current flows through the filter/DC bus. The DC bus is used to smooth the ripple in DC. This is done through capacitors and resistors. Although the DC bus is only represented by only 1 capacitor and 1 resistor, there are actually various capacitors and resistors associated in series and in parallel. The resistors are used to divide voltage and guarantee that all capacitors have the same voltage. The capacitors will absorb electrons when there is excess and will inject when there is a reduction. This helps smooth the ripples in DC.

Inversion

This step converts the DC into AC as a pulse width modulated output through an inverter. An inverter is basically a number of IGBTs (insulated gate bipolar transistors), which can be seen as switches that can turn on/off several thousand times per sec. The IGBTs open and close in pairs, i.e., the current can flow from phase 1 to 2, phase 1 to 3, phase 2 to 3, phase 2 to 1, phase 3 to 1, and phase 3 to 2.

In the oscilloscope, the waveform will look like 3-phase AC, but it will be a bit square and not applicable to electric motors. The IGBTs can close and open at different speeds and durations to change the waveform. This is called pulse width modulation, which helps mimic a sine wave and AC more suitable for electric motors.

Speed Control

The speed or revolutions per minute of the electric motor is related to the frequency of the inverted AC (speed equals frequency divided by poles and times 120). The higher the frequency, the faster the electric motor speed. VFDs can adjust the switching of IGBTs and change the waveform. By controlling the frequency, a VFD facilitates the variable speed control for electric motors.

Conclusion

Overall, a variable frequency drive (VFD) is a type of motor control device that effectively manages motor speed and torque. Through a sequence of stages including rectification, filtration, and inversion, the VFD converts incoming 3-phase AC into a controlled AC output that can vary in frequency and voltage. This capability enables precise adjustment of motor speed, crucial for optimizing efficiency and performance in various industrial and commercial applications.

As a leading manufacturer, CHINT provides reliable VFD models. The NVF7 series drive is a top option. It adopts open-loop and closed-loop magnetic flux vector control technology, with fast load response, large low-frequency torque, strong overload capacity, etc., to achieve accurate control of the equipment. With stable output, torque limit, speed tracking, simple PLC, process PID and other application functions, it can meet the electrical drive needs of both constant torque type and heavy loads and variable torque and light loads. Visit our website to find out more about CHINT VFD.

If you have any questions or need further assistance, don't hesitate to reach out to us.

The Latest
FEBRUARY 14, 2026 Designing with IEC 61439-Compliant Switchgear for Better LV Assembly Performance

Designing an IEC switchboard is necessary for every operation, whether industrial or commercial. Acquiring IEC 61439 design verification for MDBs is important.

FEBRUARY 13, 2026 How Smart Meters Help Optimize Building Energy Use

Great building energy management makes use of smart meters to gauge energy consumption. Learn why smart metering is a sign of good energy monitoring practice.

FEBRUARY 12, 2026 Selecting the Right Control Components for High-Inrush Loads

Learn how to choose the proper control components like MCCB, overload relay, and contactors used in high inrush load for motor protection.

FEBRUARY 3, 2026 Using SCADA Integration to Improve Power Quality

Learn how SCADA integration transforms power quality management in industrial facilities using intelligent controllers, metering systems, and remote monitoring.

FEBRUARY 2, 2026 How Integrated Power Systems Improve Reliability in Industrial Operations

Learn how integrated power systems with power transformers, MV switchgears, and MCCBs help industrial operations by improving reliability and reducing downtime.

DECEMBER 17, 2025 Understanding Power Losses: How Modern Switchgear Mitigates Inefficiency

Learn how power quality devices, LV switchgear, and shunt reactor solutions cut energy waste and improve electrical performance.

DECEMBER 15, 2025 Power Components for Solar and Storage Equipment

Discover the functions of the different specialized DC components and how these work together to protect, isolate, and measure solar and storage systems.

DECEMBER 12, 2025 Designing Turnkey Substations: From Specification to Commissioning

Learn how EPC teams use MV switchgear, HV switchgear, AIS, and HV MCCB to design efficient turnkey substations from spec to commissioning.

DECEMBER 10, 2025 Preventing Electrical Fires in Multi-Unit Buildings

Learn practical ways to improve electrical fire safety in multi-unit buildings with modern electrical safety devices and layered protection.

DECEMBER 8, 2025 Integrating Renewable Energy into Existing Grid Networks

Integrate renewables smoothly with modern power transformer solutions that stabilize voltage, support bidirectional flow, and strengthen grid reliability for clean energy growth.