Please enter keywords to search

Global |EN

Choose your country & Language

Asia Pacific

Australia & New Zealand
India
Indonesia
Korea
Malaysia
Philippines
Singapore
Singapore (Sunlight)
Vietnam

Middle East & Africa

CHINT-EGEMAC
Saudi Arabia
South Africa
UAE
CHINT AJLAN

Europe

France
Italy
Spain
Turkey
Kazakhstan
Netherlands

North America

Mexico

Latin America

Brazil
Peru
Ecuador

Choose your country & Language

Australia & New Zealand
India
Indonesia
Korea
Malaysia
Philippines
Singapore
Singapore (Sunlight)
Vietnam
CHINT-EGEMAC
Saudi Arabia
South Africa
UAE
CHINT AJLAN
France
Italy
Spain
Turkey
Kazakhstan
Netherlands
Mexico
Brazil
Peru
Ecuador

Please enter keywords to search

Your search term contains restricted words. Please use different keywords.

How to Install NXBLE-63 Residual Current Operated Circuit Breaker

FEB 12, 2025

Install NXBLE-63 Residual Current Operated Circuit Breaker
Install NXBLE-63 Residual Current Operated Circuit Breaker
Install NXBLE-63 Residual Current Operated Circuit Breaker

Table of Contents

  1. Preparing for Installation
  2. Pre-Installation Steps
  3. Installing the NXBLE-63 RCBO
  4. Wiring the Circuit Breaker
  5. Testing and Commissioning
  6. Conclusion

The NXBLE-63 Residual Current Operated Circuit Breaker(RCBO) is a sophisticated device. It protects electrical circuits from overcurrent. It’s also effective against ground fault conditions. The RCBO is a compact unit. It combines the functions of two devices in a single module. One is the overcurrent circuit breaker, and the other is the residual current device. This comprehensive guide presents the precise installation process. The purpose is to help you ensure the safe and efficient implementation of this critical electrical protection component.

Preparing for Installation

The NXBLE-63 Residual Current Operated Circuit Breaker installation requires attention to detail. Careful preparation and proper groundwork are essential. The following are crucial preparatory steps:

1. Safety Precautions

Power disconnection is the first and most critical safety measure. Turn off the main power supply before beginning. This step prevents potential electrical shock. It eliminates the risk of accidental energization. It brings peace of mind and safety for a residual current circuit breaker with overcurrent protection installation.

Personal protective equipment is also crucial. It’s recommended to wear insulating gloves. These provide good electrical protection. Protective goggles are also recommended. They shield your eyes from potential sparks or debris.

2. Required Tools and Materials

Successful residual current operated circuit breaker installation demands a specific set of tools and materials. These include:

  • Wire strippers
  • Crimping tools
  • Multimeter
  • Electric screwdriver
  • Flathead screwdriver
  • Wire lugs
  • Wires of appropriate specifications

Select wire specifications carefully. The cross-sectional area must match the RCBO’s current rating. Our recommended CHINT RCBO wire specifications range from 1 mm² to 16 mm², depending on the breaker’s amperage.

Pre-Installation Steps

Understanding the circuit breaker’s specifications is a key preparatory action. Selecting an appropriate installation location is equally important. These steps ensure optimal performance and safety of the residual current circuit breaker with overcurrent protection:

1. Reading the Instructions

Verify that the NXBLE-63 RCBO’s parameters precisely match your specific working conditions. Check CHINT RCBO voltage ratings, current capacity, and environmental specifications before proceeding.

Choose a residual current operated circuit breaker installation location that’s easily accessible. It should be well-ventilated and away from direct moisture or extreme temperatures. The location should allow convenient operation and maintenance.

2. Inspecting the Equipment

Carefully examine all components of the residual current circuit breaker with overcurrent protection for any damage or manufacturing defects. Ensure all parts are intact and meet quality standards before beginning installation.

Installing the NXBLE-63 RCBO

Mounting on the DIN Rail requires precision and careful alignment. Position the bottom edge of the residual current circuit breaker against the lower rail edge. Then, gently push upward until secure. Apply firm, even pressure to ensure the residual current operated circuit breaker locks into place. Verify that it’s firmly seated and cannot be easily dislodged.

NXBLE-63 Residual Current Operated Circuit Breaker
NXBLE-63 Residual Current Operated Circuit Breaker
NXBLE-63 Residual Current Operated Circuit Breaker

Wiring the Circuit Breaker

Proper wiring is the backbone of a successful CHINT RCBO installation. Follow these guidelines:

1. Choosing the Correct Wire

The wire’s cross-sectional area must precisely match the circuit breaker’s current rating. This ensures optimal residual current circuit breaker performance and prevents potential overheating or electrical failures. Use this reference table for optimal selection:

Rated Current (A)

Recommended Wire Cross-Section (mm²)

6 A

1

10 A

1.5

16 A

2.5

20 A

2.5

25 A

4

32 A

6

40 A

10

50 A

10

63 A

16

2. Wiring Process

Use high-quality wire strippers to remove 11-13mm of outer insulation. Ensure the exposed length is consistent and free from nicks or damage.

Wire lugs require secure crimping to establish reliable electrical connections. Position the wire lug carefully. Align it perfectly with the exposed copper. Use the crimping tool to create a tight, uniform connection that minimizes electrical resistance.

Next, use an electric screwdriver set to the manufacturer’s recommended specifications, typically around 2.0 N.m. This precise tightening ensures secure residual current operated circuit breaker connections without damaging the terminal or wire.

3. Connecting Inlet and Outlet Ends

Carefully follow the product’s labeling and installation instructions when connecting electrical lines. Each residual current circuit breaker terminal is specifically designed for incoming or outgoing connections. Misplacement can lead to serious electrical hazards. Connect the incoming power lines to the appropriate input terminals and the load lines to the output terminals.

4. Compliance with Standards

Adherence to local electrical regulations is crucial during the residual current operated circuit breaker wiring process. Make sure your installation meets all relevant safety codes and municipal guidelines to guarantee a safe, compliant electrical setup.

Testing and Commissioning

The testing and commissioning phase validates the circuit breaker’s functionality. It ensures electrical safety and confirms proper installation.

1. Pre-Power Checks

Verify that the circuit breaker’s handle operates smoothly without resistance. Confirm all connections are tight, secure, and correctly positioned. Check that no loose wires or potential short-circuit risks exist in the installation area.

2. Testing After Power-On

Use a multimeter to perform detailed electrical testing. Measure the voltage across different terminals, checking for correct readings. Verify continuity to ensure uninterrupted electrical pathways. Confirm incoming line to neutral voltage is approximately 230 volts. The outgoing line to neutral should be below 20 volts.

Next, systematically test the residual current operated circuit breaker through multiple operational scenarios. Verify performance in OPEN, CLOSED, and TRIPPING states. Check that voltage drops appropriately when the breaker opens and returns to normal when closed.

3. Using the RCD Test Button

The residual current device (RCD) test button allows direct verification of automatic tripping functionality. Press the button to simulate a ground fault condition. Confirm the circuit breaker trips immediately and automatically.

Conclusion

Installing the NXBLE-63 RCBO requires attention to detail and strict adherence to safety protocols. Safety precautions, gathering the right tools, and pre-installation steps are crucial. Then, you can proceed with installation, wiring, and finally, testing and commissioning. At CHINT, we provide reliable electrical protection solutions that prioritize safety and performance. For comprehensive guidance and support, visit our website.

The Latest
JULY 10, 2025 Configuration Guide: Setting Up the CHINT SMG-WSR and SMG-ESR Open Protocol Gateway

Step-by-step protocol gateway setup guide for CHINT SMG-WSR and SMG-ESR, covering wiring, network configuration, and MQTT cloud connection.

JULY 2, 2025 A Guide to the CHINT SMG Open Protocol Gateway: Building Flexible IoT Solutions

Discover how CHINT’s SMG-WSR/SMG-ESR Gateway and NB2 Circuit Breakers create smart, efficient, and remote-controlled electrical systems for various industries.

JULY 1, 2025 An Introduction to Power Circuit Breakers: How Do They Protect Your Industrial and Commercial Facilities?

Explore CHINT’s power circuit breaker solutions for high-performance electrical protection in industrial, commercial, and healthcare environments.

JULY 1, 2025 Understanding the VFD Working Principle in Industrial Automation

Learn the working principle of VFDs and discover how CHINT NVF7 boosts performance, energy savings, and equipment longevity in industrial automation.

JUNE 30, 2025 Gas Insulated Switchgear in Renewable Energy Integration

Learn how CHINT’s gas-insulated switchgear ensures stable, safe, and compact power distribution in renewable energy projects like wind and solar farms.

JUNE 30, 2025 Factors that Influence Commercial HVAC System Cost

Learn the major factors that impact commercial HVAC system pricing, from system types and tonnage to installation conditions and energy efficiency.

JUNE 27, 2025 Applications of Power Transformers in Solar Energy Systems

Discover how CHINT Global's power transformers enhance solar energy systems through efficient voltage regulation and grid integration for homes, businesses, and utility-scale projects.

JUNE 27, 2025 How to Wire a Low-Voltage Transformer

Discover essential safety precautions, wiring methods, and troubleshooting tips for low-voltage transformer setup. A complete guide for technicians and engineers.

JUNE 27, 2025 Water Pump Drives: PTO vs. Battery vs. Solar

Explore key benefits and drawbacks of PTO, battery-powered, and solar-powered water pump systems. Choose the right drive for your specific use case.

JUNE 26, 2025 How to Install a Changeover Switch for a Generator?

Discover how to install a manual changeover switch for your generator. Ensure safe and reliable power transfer with CHINT's expert tips and tools.