Please enter keywords to search

Global |EN

Choose your country & Language

Asia Pacific

Australia & New Zealand
India
Indonesia
Malaysia
Philippines
Singapore
Vietnam

Middle East & Africa

Saudi Arabia
South Africa
UAE
Egypt
Kenya

Europe

France
Kazakhstan
Netherlands
Italy
Spain
Turkey
United Kingdom

North America

Mexico
USA
Canada

Latin America

Brazil
Colombia
Ecuador
Peru

Choose your country & Language

Australia & New Zealand
India
Indonesia
Malaysia
Philippines
Singapore
Vietnam
Saudi Arabia
South Africa
UAE
Egypt
Kenya
France
Kazakhstan
Netherlands
Italy
Spain
Turkey
United Kingdom
Mexico
USA
Canada
Brazil
Colombia
Ecuador
Peru

Please enter keywords to search

Your search term contains restricted words. Please use different keywords.

A Quick Guide to Adjustable Circuit Breaker

AUG 10, 2023

quick guide to adjustable circuit breaker 1536x864
quick guide to adjustable circuit breaker 1536x864
quick-guide-to-adjustable-circuit-breaker-1536x864

Table of Contents

  1. What is an Adjustable Trip Circuit Breaker?
  2. How to Set Up and Adjust an Adjustable Circuit Breaker
  3. Applications and Suitable Environments for Adjustable Circuit Breakers
  4. Maintenance and Troubleshooting for Adjustable Circuit Breakers
  5. Conclusion

Circuit breakers are an integral part of any electrical system. A circuit breaker will trip or stop the flow of electricity if a current reaches a certain overload or overcurrent setting or if there’s a short circuit. While basic circuit breakers trip at a set voltage, adjustable circuit breakers allow you to change the trip curve, making it a more versatile device in your system.

Below, we’ll cover the basics of adjustable trip circuit breakers and some tips for use, maintenance, and troubleshooting.

What is an Adjustable Trip Circuit Breaker?

An adjustable trip circuit breaker lets you adjust the parameters for currents and short circuits. While there are electronic circuit breakers that allow for several customizations, you can change the setting on adjustable trip circuit breakers manually.

This type of circuit breaker has several main components—contacts, an arc extinguisher, a trip unit, and a current-adjusting mechanism. Electricity flows through the contacts.

In the event of an overload or short circuit, a trip unit will open the contacts. This interrupts the flow of electricity. Depending on whether the circuit experiences an overload or a current, a bimetallic strip may heat and open the contact, or an electromagnetic coil may open the contacts.

There is also a small screw or other adjusting device that lets you change the voltage that will activate the trip unit and stop the electrical flow.

How to Set Up and Adjust an Adjustable Circuit Breaker

Unless you are an electrician or have extensive electrical experience, always hire a professional to install your adjustable trip circuit breaker. Once installed, you must set it up to work with your equipment. There are several settings you should consider as you set up your breaker. A proper setup will ensure that your breaker trips properly and keep electricity flowing correctly through your system.

The first setting to consider is continuous amps. This rating is the highest level current the breaker can withstand before tripping. You can adjust continuous amps between 20-100% of the highest current.

The next setting is a long-time delay. This setting lets you specify how long the breaker can withstand an overcurrent without tripping. You may adjust this if there are slight fluctuations that don’t require tripping.

Next is the short-time pickup setting. Sometimes, you need a higher current to pass through the breaker for a short period. This setting allows you to raise the max current temporarily. The short-time delay setting works with short-time pickup. It lets you set the time for the delay, while short-term pickup enables you to adjust the current setting.

Instantaneous pickup works with the previous two settings. It acts as an override and can be set from two to 40 times the continuous amps. When the current reaches the set point, it will automatically trip without delay.

The final setting is for the ground fault pickup. This setting allows you to adjust the breaker to manage a ground fault current. You can set the ground fault pickup between 20% and 70% of the maximum breaker capacity and the device will trip if the ground fault current exceeds this level.

Applications and Suitable Environments for Adjustable Circuit Breakers

You can use adjustable trip circuit breakers in almost any electric setup with energy fluctuations. They also allow for versatility in situations where you need to use two or more products with different rated currents.

A data center is one example of where you can use an adjustable trip circuit breaker. The center needs steady, reliable power, but currents may fluctuate. If a breaker trips unnecessarily and there is a power loss, computers, and servers may fail to function properly.

In systems where motors run intermittently, there may be a momentary current spike as motors turn on. The short-time pickup and delay settings allow you to adjust for these brief power spikes and avoid tripping the breaker.

Another common situation happens with conductors. You may need to run the breaker at a lower setting than its max current with the conductors. Use the continuous amps setting to lower the acceptable max current.

Maintenance and Troubleshooting for Adjustable Circuit Breakers

Regular maintenance ensures that your adjustable circuit breaker works properly, and you’ll get the most life out of the breaker. Clean it daily to remove dirt and dust and inspect for cracks or damage.

When working with a high-voltage breaker, regularly run tests at least once every six months. This allows you to troubleshoot any problem ahead of time or before it gets worse. You can use an analyzer test to check how long the open and close mechanism takes to operate and ensure that the poles are synchronized.

Also, use a micro-ohm meter to monitor the breaker’s resistance and discover any hot spots in your setup. Electrical systems often operate at high temperatures. Extreme heat can lead to the deterioration of wires and other equipment. An infrared inspection allows you to monitor the system for hot spots and replace equipment.

Conclusion

Adjustable circuit breakers provide versatility and efficiency in your electrical system. With less unnecessary tripping, you can streamline your workflow. Through proper settings and regular maintenance, you’ll be able to get the most out of your breaker.

Chint Global specializes in reliable, durable electrical equipment, including a line of adjustable trip circuit breakers. Our NBTL adjustable circuit breaker can help you protect your system against short circuits, overloads, and leakage. You can use it with products with AC currents of 50/60Hz and a rated voltage of 230/240V.

Contact Chint Global today to learn more about our products and to find the one that works for you.

FAQ about Adjustable Circuit Breaker

How do adjustable circuit breakers differ from fixed ones?

Is there a risk of misadjustment with adjustable circuit breakers?

What should I do if my adjustable circuit breaker trips frequently?

The Latest
FEBRUARY 14, 2026 Designing with IEC 61439-Compliant Switchgear for Better LV Assembly Performance

Designing an IEC switchboard is necessary for every operation, whether industrial or commercial. Acquiring IEC 61439 design verification for MDBs is important.

FEBRUARY 13, 2026 How Smart Meters Help Optimize Building Energy Use

Great building energy management makes use of smart meters to gauge energy consumption. Learn why smart metering is a sign of good energy monitoring practice.

FEBRUARY 12, 2026 Selecting the Right Control Components for High-Inrush Loads

Learn how to choose the proper control components like MCCB, overload relay, and contactors used in high inrush load for motor protection.

FEBRUARY 3, 2026 Using SCADA Integration to Improve Power Quality

Learn how SCADA integration transforms power quality management in industrial facilities using intelligent controllers, metering systems, and remote monitoring.

FEBRUARY 2, 2026 How Integrated Power Systems Improve Reliability in Industrial Operations

Learn how integrated power systems with power transformers, MV switchgears, and MCCBs help industrial operations by improving reliability and reducing downtime.

DECEMBER 17, 2025 Understanding Power Losses: How Modern Switchgear Mitigates Inefficiency

Learn how power quality devices, LV switchgear, and shunt reactor solutions cut energy waste and improve electrical performance.

DECEMBER 15, 2025 Power Components for Solar and Storage Equipment

Discover the functions of the different specialized DC components and how these work together to protect, isolate, and measure solar and storage systems.

DECEMBER 12, 2025 Designing Turnkey Substations: From Specification to Commissioning

Learn how EPC teams use MV switchgear, HV switchgear, AIS, and HV MCCB to design efficient turnkey substations from spec to commissioning.

DECEMBER 10, 2025 Preventing Electrical Fires in Multi-Unit Buildings

Learn practical ways to improve electrical fire safety in multi-unit buildings with modern electrical safety devices and layered protection.

DECEMBER 8, 2025 Integrating Renewable Energy into Existing Grid Networks

Integrate renewables smoothly with modern power transformer solutions that stabilize voltage, support bidirectional flow, and strengthen grid reliability for clean energy growth.