Please enter keywords to search

Global |EN

Choose your country & Language

Asia Pacific

Australia & New Zealand
India
Indonesia
Korea
Malaysia
Philippines
Singapore
Singapore (Sunlight)
Vietnam

Middle East & Africa

CHINT-EGEMAC
Saudi Arabia
South Africa
UAE
CHINT AJLAN
Egypt

Europe

France
Italy
Spain
Turkey
Kazakhstan
Netherlands

North America

Mexico

Latin America

Brazil
Peru
Ecuador

Choose your country & Language

Australia & New Zealand
India
Indonesia
Korea
Malaysia
Philippines
Singapore
Singapore (Sunlight)
Vietnam
CHINT-EGEMAC
Saudi Arabia
South Africa
UAE
CHINT AJLAN
Egypt
France
Italy
Spain
Turkey
Kazakhstan
Netherlands
Mexico
Brazil
Peru
Ecuador

Please enter keywords to search

Your search term contains restricted words. Please use different keywords.

How to Install NVF2G Series Variable Frequency Drives

FEB 18, 2025

Install NVF2G Series Variable Frequency Drives
Install NVF2G Series Variable Frequency Drives
Install NVF2G Series Variable Frequency Drives

Table of Contents

  1. Tools Needed for Installing NVF2G Series Variable Frequency Drives
  2. Cautions for Installing NVF2G Series Variable Frequency Drives
  3. How to Wire NVF2G Series Variable Frequency Drives
  4. How to Test the NVF2G Series Variable Frequency Drives
  5. Conclusion

The NVF2G Variable Frequency Drive is a top solution for frequency conversion and speed regulation. It helps ensure operational precision effectively. These advanced VFD drives enable smooth motor starts. They improve accuracy and enhance overall system performance for AC asynchronous motors. This guide explores the variable frequency drive installation process in detail.

Tools Needed for Installing NVF2G Series Variable Frequency Drives

Proper preparation is key. It helps ensure a successful variable frequency drive installation. Here’s what you will need:

  • Electric screwdriver
  • Wire strippers
  • Wire crimping pliers
  • Wires of appropriate specifications
  • Twisted-pair shielded cables
  • Wire lugs
  • Screwdrivers
  • Insulating gloves

Cautions for Installing NVF2G Series Variable Frequency Drives

Installing the NVF2G Series variable frequency drive requires strict adherence to safety protocols. Understanding and following these cautions will protect both the equipment and the installer:

1. Disconnect the Power Supply Before Installation

Always ensure the power supply is completely disconnected before proceeding with the variable frequency drive installation work. This prevents potential electrical shock and protects sensitive equipment components.

2. Wear Insulating Gloves and Protective Goggles

Wear these two personal protective equipment items. They provide critical protection against electrical hazards and potential accidents.

3. Do Not Open the Enclosure within 10 Minutes of Power Disconnection

Electrical capacitors of the variable speed drive can retain charge even after power disconnection. It is recommended to wait at least 10 minutes.

4. Vertical Installation Requirements

When installing multiple variable frequency drives vertically, make sure to add windshields between VFD drives. This ensures proper cooling and prevents heat transfer between units.

5. Oblique Installation Guidelines

For oblique installations of variable frequency drive solutions, make sure to separate the air ducts on the inlet and outlet sides. This helps maintain proper ventilation and prevents potential thermal interference between VFDs.

NVF2G Series Variable Frequency Drives
NVF2G Series Variable Frequency Drives
NVF2G Series Variable Frequency Drives

How to Wire NVF2G Series Variable Frequency Drives

Precise wiring is critical for optimal variable speed drive performance. Follow these guidelines:

1. Analog Input Terminals (AI1/AI2)

These terminals feature a common GND terminal critical for precise signal processing.

AI1 offers flexible configuration for voltage or current input through jumper J601. To set voltage input, short J601 1-2; for current input, short 2-3.

Additionally, the 485+ and 485- terminals comply with the RS485 communication standard, enabling advanced networking capabilities.

Before configuration, carefully strip 9-11 millimeters of copper wire to ensure proper connection.

2. Analog Output Terminals (AO1/AO2)

These terminals include a common GND for consistent signal reference.

AO1 supports configurable voltage or current output via J603 jumper settings. For voltage input, short J603 1-2; for current input, short 2-3.

Variable speed drive wiring flexibility is further enhanced by source/sink configuration: source wiring requires shorting 1-2 of J606. Sink wiring needs 2-3 shorting.

3. Relay 1 Contact Outputs (R1A/R1B/R1C)

R1A and R1B function as normal open contact groups, while R1C and R1B serve as normal close contact groups.

These relay outputs provide comprehensive signal management capabilities. The multiple contact configurations enable complex control scenarios.

4. Relay 2 Contact Outputs (R2A/R2B/R2C)

Mirroring Relay 1’s design, these contact outputs offer additional signal routing options. R2A and R2B operate as normal open contact groups. R2C and R2B function as normal close contact groups.

5. Main Circuit Wiring

The Y1\COM open collector output further expands the signaling flexibility of the variable frequency drive.

For primary circuit connections, connect R/S/T to the power supply and U/V/W to the motor. When implementing brake functionality, remove the yellow card and connect the external brake resistor to the “+” and “B” terminals.

Critical Installation Note: The far-left terminal serves as the grounding terminal, exclusively connectable to protection terminal P1. Prohibit connections to other main circuit terminals to prevent potential variable frequency drive damage.

How to Test the NVF2G Series Variable Frequency Drives

Thorough testing ensures proper installation and functionality of your VFD drives. Here are the guidelines/recommendations:

  1. Ground the Protection Terminal Reliably: Ensure the protection terminal connects to a reliable ground connection. The grounding wire’s cross-sectional area should match the input power line.
  2. Connect DC Bus Terminals as Required: Carefully connect the positive and negative DC bus terminals according to manufacturer specifications. Verify polarity and ensure secure connections for stable power delivery.
  3. Configure External Brake Terminals: If using an external brake system, carefully configure the brake terminals. Verify that connections match your specific motor and application requirements.
  4. Power On and Check Display: Review that all wiring connections are correct. Also, confirm voltage matches variable frequency drive and motor specifications. Power on for 1 or 2 seconds, the display should initially show 50.00hz.

Conclusion

Installing Variable Frequency Drives can seem complex. Following the comprehensive installation guidelines is key to ensuring a safe, efficient setup. At CHINT, our NVF2G Series is designed to simplify the process with user-friendly features and robust performance. We also have a dedicated technical support team ready to assist you at every step. Contact us for comprehensive support and additional guidance.

The Latest
OCTOBER 15, 2025 Guide to MCB Trip Curves: Selecting the Right B, C, or D Curve for Overcurrent Protection

Solve nuisance tripping problems for good. Our guide helps you diagnose why your breaker trips on startup and shows how to select the correct B, C, or D curve for motors, pumps, and other loads.

SEPTEMBER 28, 2025 Industrial Diesel Generator Safety Devices That Keep Operations Running

Discover how diesel generator safety devices like MCCBs, ACBs, and relays ensure reliable backup power, protect facilities, and keep operations running safely.

SEPTEMBER 23, 2025 Manual Motor Starter: A Guide for Safer Motor Control

Every electric motor needs protection against fault conditions. In this article, learn how a manual motor starter helps you achieve this requirement.

AUGUST 22, 2025 MCCB Frame Sizes Explained: Choosing the Right Circuit Breaker for Industrial Loads

Circuit breakers are important in any electrical system. Learn about MCCB frame sizes to select the correct circuit breaker for industrial loads.

AUGUST 14, 2025 Customized Electrical Components with Better Adaptability, Better Meet Customer Needs

CHINT offers customized OEM electrical solutions with global compliance, fast delivery, and superior adaptability for HVAC, DG, and elevator applications.

AUGUST 11, 2025 From Certification to Application: How CHINT M1 MCCB Supports OEM Success Stories

CHINT M1 MCCB: UL489-certified, high-capacity, versatile breaker powering OEM success in HVAC, solar, industrial & more.

AUGUST 1, 2025 Slim RCBO Solutions for Power Distribution: CHINT NB1L-20 for Compact, Compliant Installations

CHINT’s NB1L-20 is a great addition to any power distribution system. Learn why you should consider our product if you value safety and compliance.

JULY 14, 2025 UL Certification Requirements for OEMs: Essential Guide for Renewable Energy Projects in 2025

UL Certification Requirements for OEMs: Essential Guide for Renewable Energy Projects in 2025

JULY 10, 2025 Configuration Guide: Setting Up the CHINT SMG-WSR and SMG-ESR Open Protocol Gateway

Step-by-step protocol gateway setup guide for CHINT SMG-WSR and SMG-ESR, covering wiring, network configuration, and MQTT cloud connection.

JULY 2, 2025 A Guide to the CHINT SMG Open Protocol Gateway: Building Flexible IoT Solutions

Discover how CHINT’s SMG-WSR/SMG-ESR Gateway and NB2 Circuit Breakers create smart, efficient, and remote-controlled electrical systems for various industries.