Por favor, introduzca palabras clave para buscar

Global |EN

Elige tu país e idioma

Asia Pacífico

Australia y Nueva Zelanda
India
Indonesia
Corea
Malasia
Filipinas
Singapur
Singapur (luz del sol)
Vietnam

Oriente Medio y África

CHINT-EGEMAC
Arabia Saudita
Sudáfrica
Emiratos Árabes Unidos
CHINT AJLAN

Europa

España
Francia
Kazajstán
Italia
Netherlands
Pavo
Reino Unido

América del norte

México

América Latina

Brasil
Colombia
Ecuador
Perú
Baja tensión
Aparatos de conmutación de baja tensión y software
Carga de vehículos eléctricos
Telecomunicaciones y Data centers
Edificios
Centro de servicio
Contáctenos
Llámanos +57 (601) 712-5419
Envíenos un correo electrónico infoco@chintglobal.com
Acerca de CHINT
Centro de noticias
Carreras

Elige tu país e idioma

Australia y Nueva Zelanda
India
Indonesia
Corea
Malasia
Filipinas
Singapur
Singapur (luz del sol)
Vietnam
CHINT-EGEMAC
Arabia Saudita
Sudáfrica
Emiratos Árabes Unidos
CHINT AJLAN
España
Francia
Kazajstán
Italia
Netherlands
Pavo
Reino Unido
México
Brasil
Colombia
Ecuador
Perú

Por favor, introduzca palabras clave para buscar

Su término de búsqueda contiene palabras clave restringidas. Utilice otras palabras clave.

What is a Surge Protective Device (SPD)?

JUL 12, 2024

Overvoltage can occur due to many reasons. These include lightning strikes and switching on/off large electrical loads. This can cause problems like busted electronics or fires if the safety gear fails. A surge protective device, also called an SPD, is extremely useful when it comes to this. It adds important protection from high-voltage power spikes that regular circuit breakers can’t handle. By shunting excess energy to the ground, SPDs aim to keep sensitive electronics safe from the dangers of overvoltage.

SPD: Components and Working Principle

A surge protective device has several key components. These include:

 

  • Metal Oxide Varistors (MOVs): These are ceramic-based components that change their resistance depending on the voltage applied to them. When the applied voltage increases, the resistance lowers.

  • Fuses: Fuses protect MOVs from excessive current during a surge.

  • Indicator Lights: These show the real-time status of the surge protective device working conditions.

The working principle of a surge protective device is straightforward. When a surge enters through the power lines, the MOVs immediately lower their resistance and thus raise their conductivity levels. In this way, they shunt most of the current to the earth’s ground before it reaches protected devices downstream. The diverted surge is harmlessly reduced before equipment is exposed to high voltage or current spikes.

What is a Surge Protective Device (SPD) 20240712 2
What is a Surge Protective Device (SPD) 20240712 2
What is a Surge Protective Device (SPD)-20240712-2
Key specifications provide important ratings that define an SPD’s performance capabilities. These include:
 
Specifications
Meaning
In
In is the nominal discharge current rating that the spike protector is designed to continuously carry without damage. In is tested using 8/20 µs current wave shape.
Imax
Imax stands for maximum discharge current rating. This indicates the maximum short-duration current pulse that the surge protective device is tested to discharge. Imax is tested using 8/20 µs current wave shape.
Iimp
Iimp refers to impulse current rating. It specifies the maximum current the SPD can withstand, similar to Imax. But Iimp is tested using 10/350 µs current wave shape.
Up
Up refers to the maximum continuous operating voltage rating of the surge arrester at In. This is the voltage protection level. It is defined as the maximum voltage that can be present across the SPD terminals when it is active.
Uc
Uc denotes maximum continuous operating voltage. It specifies the highest voltage the surge protector can experience across its terminals during normal use. After this limit, there’s a risk of performance degradation or potential failure due to overvoltage conditions.

Understanding the different types of surge protective devices is key to selecting the most suitable protection for various system needs. Three main types include:

Type 1 SPD

Type 1 SPDs are intended to protect electrical devices against direct lightning stroke. They should pass IEC 61643-11 Class I tests and are tested using 10/350 µs current waves.

Type 2 SPD

When lightning strikes near the overhead power lines, it generates an electromagnetic field and causes a voltage surge. Type 2 SPDs are intended to protect electrical installations against such indirect lightning strokes. Type 2 SPD units should pass IEC 61643-11 Class II tests and are tested using 8/20 µs current waves.

Type 3 SPD

Types 3 SPDs have a lower discharge capacity. They are intended to provide further protection for electrical installations, especially sensitive loads. Type 3 units should pass IEC 61643-11 Class III tests and should be tested using 1.2/50 µs voltage waves and 8/20 µs current waves.

Cautions When Installing SPD

Proper installation is crucial for SPDs to provide effective surge protection. Cautions when installing a surge protective device include:

 

  • The SPD must be installed in parallel directly before circuits or devices to allow the diversion of surge current around sensitive equipment.
  • Connection wire lengths for the SPD in the switchboard should not exceed 0.5 meters.
  • Relying on a Type 1 surge protector alone may be insufficient for effectively discharging high-energy currents and limiting overvoltages. Adding a Type 2 or Type 3 surge protector is recommended.
  • All installation work must be performed by certified electricians in compliance with local electrical codes to ensure proper grounding and unit mounting.

Conclusion

In summary, a surge protective device plays an important protective role for electronics across various industrial and commercial applications. By installing the properly rated and certified SPD, equipment owners gain a robust defense against power anomalies outside of standard circuit breaker capabilities. At CHINT, we design and manufacture reliable SPD solutions for almost any installation need. Visit our website to learn more about our company and browse our full offerings of surge protection products.

Lo último
MAY 6, 2025 NGC5 Diseñado para la excelencia, fabricado para la fiabilidad

NGC5 Original Manufactured LV Switchgear es el nuevo tipo de montaje de prueba elaborado por CHINT. Establece un nuevo punto de referencia para la fiabilidad y la eficiencia.

APRIL 22, 2025 Cómo protege el magnetotérmico NM8N-HV las salidas de CA de los sistemas solares

El disyuntor de caja moldeada NM8N-HV proporciona una protección esencial para las salidas de CA en sistemas de energía solar contra cortocircuitos y sobrecargas.

APRIL 15, 2025 What is a New Energy Air Switch Disconnector: Facts You Need to Know

Discover how the new energy air switch disconnector (solar disconnector switch) plays a crucial role in ensuring safety and reliability in utility-scale solar and battery energy storage systems (BESS).

APRIL 2, 2025 Experience Smooth Motor Starting with CHINT’s NJRP5-D Soft Starter

This article focuses on CHINT’s NJRP5-D Soft Starter and explores its functionality and advantages.

MARCH 26, 2025 Celda de media tensión GIS RMU CHINT 36/40,5kV: Nuevas aplicaciones energéticas con soluciones innovadoras

La celda de media tensión RMU CHINT no sólo resuelve los retos técnicos y medioambientales, sino que también mejora la eficacia operativa y la rentabilidad de los clientes.

MARCH 21, 2025 Single Phase vs Three Phase Voltage Regulator

This article explains the differences between single phase voltage regulators and three phase voltage regulators.

MARCH 18, 2025 Miniature Circuit Breaker: Understanding UL 489 and UL 1077

This article specifies the key differences between UL 489 and UL 1077, helping choose suitable Miniature Circuit Breakers.

MARCH 17, 2025 IEC frente a UL: Comprender las normas de certificación de disyuntores de aire

Compare la certificación IEC frente a la UL para disyuntores de aire: normas regionales, cumplimiento de las normas de seguridad y soluciones con certificación mundial de CHINT para una protección eléctrica fiable.

MARCH 5, 2025 Guide to Air Circuit Breaker Maintenance

This guide discovers essential inspection, cleaning, and testing procedures of the air circuit breaker to prevent failures and extend equipment lifespan.

FEBRUARY 26, 2025 The Basics of NVF2L Compact Micro Drive

NVF2L Compact Micro Drive is designed to meet the growing demand for efficient, space-saving solutions in various industrial applications. Explore CHINT's industrial drive technology solutions.